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Abstract

In this paper, we propose a new technique for the numerical treat-
ment of external flow problems with oscillatory behavior of the solu-
tion in time. Specifically, we consider the case of unbounded
compressible viscous plane flow past a finite body (airfoil). Oscilla-
tions of the flow in time may be caused by the time-periodic injection of
fluid into the boundary layer, which in accordance with experimental
data, may essentially increase the performance of the airfoil. To con-
duct the actual computations, we have to somehow restrict the original
unbounded domain, that is, to introduce an artificial (external) bound-
ary and to further consider only a finite computational domain. Conse-
quently, we will need to formulate some artificial boundary conditions
(ABC’s) at the introduced external boundary. The ABC’s we are aim-
ing to obtain must meet a fundamental requirement. One should be
able to uniquely complement the solution calculated inside the finite
computational domain to its infinite exterior so that the original prob-
lem is solved within the desired accuracy. Our construction of such
ABC’s for oscillating flows is based on an essential assumption: the
Navier-Stokes equations can be linearized in the far field against the
free-stream background. To actually compute the ABC’s, we represent
the far-field solution as a Fourier series in time and then apply the Dif-
ference Potentials Method (DPM) of V. S. Ryaben’kii. This paper con-
tains a general theoretical description of the algorithm for setting the
DPM-based ABC’s for time-periodic external flows. Based on our
experience in implementing analogous ABC’s for steady-state prob-
lems (a simpler case), we expect that these boundary conditions will
become an effective tool for constructing robust numerical methods to
calculate oscillatory flows.

1. Introduction

The numerical study of problems originally formulated on unbounded domains requires the imple-
mentation of special techniques for the “treatment of infinity” (which is necessitated by the restricted
facilities of modern computers). One of the corresponding techniques is based on an artificial truncation
of the original infinite domain, which implies that one must set special boundary conditions at the exter-
nal (artificial) boundary of the newly formed finite computational domain. The aim of this paper is to
describe the theoretical foundations for constructing such artificial boundary conditions (ABC’s) for the
computation of certain unsteady external flows.

Before proceeding to the actual description of the problem, let us first define the concept ofexact
ABC’s. Namely, exact ABC’s are the boundary conditions that enable one to uniquely complement the
solution of the “truncated problem” to the unbounded exterior of the computational domain so that the
original problem is solved. The exact ABC’s usually appear to be nonlocal for steady-state problems in
space and for time-dependent problems in both space and time.

Let us emphasize that our main objective in this paper is to construct special boundary conditions
that would model (and in the ideal case equivalently replace) the exterior part of the problem, i.e., the
part we eliminate by truncation. Many examples of such boundary conditions can be found in compre-
hensive reviews by Givoli. (See refs. 1 and 2.) This formulation differs from another well-known prob-
lem related to setting the boundary conditions for numerical algorithms, namely, to construct such
boundary conditions that would ensure well-posedness of the truncated problem and stability of the
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integration process in time. In fact, these two formulations are not completely independent. For exam-
ple, the issue of well-posedness for certain classes of (local) ABC’s was thoroughly investigated by
Gustafsson. (See refs. 3–5.) On the other hand, a group of very delicate questions related to the issue of
long-time stability is studied by Carpenter, Gottlieb, and Abarbanel in reference 6 (for some specific
boundary-value problems). The issue of connections between the (highly accurate nonlocal) boundary
conditions that “model the infinity” and the boundary conditions that ensure the long-time stability will
be an interesting subject for a future investigation.

In this paper, we consider an unbounded compressible viscous flow past a finite body or configura-
tion of bodies (e.g., single-element or multi-element airfoil). The behavior of the flow in time is
assumed to be oscillatory. We must emphasize that while talking about the oscillatory time behavior we
mean that some alternating (time-periodic) influence is exerted on the flow (e.g., see experimental work
by Seifert, et al. in ref. 7) and expect that those frequencies that are connected to this influence will
dominate in the solution. We expect that this circumstance will enable us to construct the ABC’s with-
out taking into account any other time-dependent effects. From a mathematical standpoint, this case fills
an intermediate position between the steady-state and true unsteady flows.

The steady-state case is relatively simple compared with time-dependent flows. In reference 8, we
have constructed the ABC’s for calculating external viscous compressible steady-state flows. These
boundary conditions were based on the concept of far-field linearization and on the application of the
Difference Potentials Method (DPM) of Ryaben’kii. (See refs. 9 and 10.) The ABC’s (ref. 8) differ only
slightly from the exact ABC’s (a more rigorous formulation of the latter statement may be found in
ref. 8); therefore, the ABC’s (ref. 8) turn out to be global in space. However, practical implementation
of these boundary conditions is fairly easy. (See refs. 11 and 12.) They were used along with the Navier-
Stokes code by Jameson, Schmidt, Turkel, and Swanson (refs. 13–15) for computing different external
flows. Numerical experiments show that the global DPM-based ABC’s (ref. 8) provide high accuracy of
computations, as well as fast convergence of the multigrid iteration procedure to a steady state. (See
refs. 11 and12.) The computational cost of boundary conditions (refs. 8, 11, and 12) is not high in com-
parison with the total cost of the original procedure. (See refs. 13–15.) Generally, the numerical algo-
rithm we used for integrating the Navier-Stokes equations became more robust (in comparison with the
standard procedure (refs. 13–15)) if supplemented by the DPM-based ABC’s. (See ref. 8.)

Additionally, we would like to emphasize that the ABC’s (ref. 8) were constructed specially for the
steady-state problem and on the basis of stationary governing equations, independent of any specific
technique for solving the stationary equations inside the computational domain. In practical computa-
tions, we use multigrid iterations (refs. 13–15) for calculating the steady-state solutions in references 11
and 12. In doing so, we set the ABC’s (ref. 8) on each iteration on the upper time level. Of course, the
boundary data on the intermediate stage of the iteration procedure (i.e., until we achieve the steady
state) are not necessarily consistent with the formal “stationary” treatment of the far field. However,
treating the “time-intermediate” boundary data as if it were already steady has been found effective in
computational practice. (See refs. 11 and 12.) We are going to use a similar idea for the time-periodic
case studied in this paper.

True unsteady flows are much more complicated in terms of both theoretical analysis and practical
calculations. In general, the exact ABC’s for unsteady problems will be nonlocal in both space and time.
Therefore, the corresponding computational cost may appear to be rather high. This is also true for the
global DPM-based boundary conditions which can be constructed as close to the exact ones as desired.
The corresponding general theory for unsteady problems is contained in work by Ryaben’kii. (See
ref. 16.)

However, an intermediate case of oscillatory time behavior must be less expensive in terms of
required computer resources since the global character of the ABC’s in time will obviously be restricted
by the value of one period. Moreover, the theoretical analysis of this case based on the usage of
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the Fourier representation in time also appears to be less complicated than the general one from
reference 16 since in our analysis we actually reduce the time-dependent problem to a family of steady-
state problems.

 On the other hand, don’t assume that the oscillating flow is a particular and, therefore, an unimpor-
tant case. For example, experiments (ref. 7) show that the time-periodic injection of fluid into the turbu-
lent boundary layer may increase its resistance to adverse pressure gradients without separation. This
implies an essential improvement of airfoil performance, up to 60 percent for high (post stall) angles of
attack, according to reference 7. The phenomenon was observed on different geometries (original
NACA0015 airfoil, the same airfoil with the deflected flap, and some others), which leads us to believe
that it may be effectively used in aircraft design. Therefore, an accurate numerical investigation of the
phenomenon becomes an important issue, and an accurate procedure for setting the ABC’s must be one
of the principle elements of any computational algorithm used for such an investigation.

The previous example is probably not a unique one where the time-periodic treatment of flow in the
far field might be relevant. In general, for the oscillatory case we propose the following construction of
ABC’s. First, linearize the governing equations in the far field. Then, assuming that the time period is
initially prescribed, apply the Fourier transform in time and obtain a family of steady-state problems
(where the unknowns are amplitudes). The latter problems are then treated by means of the DPM. (See
refs.9 and 10.) The central idea of the DPM-based approach is to equivalently replace the problem for-
mulated on a domain by a certain operator equation formulated on its boundary. For each one of the
foregoing steady-state problems (note, the family of these problems is parameterized by the frequency,
i.e., by the dual Fourier variable), this replacement results in an operator equation formulated at the
artificial boundary of the computational domain (i.e., connecting the boundary values of the solution).
The operator involved (a projection) is somewhat analogous to the boundary pseudodifferential opera-
tors introduced by Calderon. (See ref. 17.) Because of the equivalence to the exterior linear problem, the
previously-mentioned operator equation (more precisely, the entire family of these equations) can be
considered a desirable exact ABC (limited only by the accuracy of far-field linearization) for the prob-
lem solved inside the computational domain. In other words, this operator equation adequately takes
into account the structure of the solution from outside the computational domain, which might also be
calledthe exact transfer of boundary conditions from infinity. (See ref. 16.)

We actually develop the DPM-based ABC’s for the already discrete formulation of the problem. In
doing so, the set of the frequencies involved is obviously finite. Therefore, we can actually compute the
corresponding boundary operator for each one of the steady-state problems arising after the Fourier
transform in time. Then, for reasons of numerical convenience, we represent the solution to the linear-
ized exterior problem in the form of generalized potential. (See refs. 9 and 10.) The density of general-
ized potential serves as an unknown function in the previously-mentioned operator equation. By using
the generalized potential to set the ABC’s we gain more generality from a geometric standpoint. More-
over, we can easily match the solutions of the interior nonlinear problem and the exterior linear problem
when conducting practical computations. (We need to actually calculate the generalized potential only
in some neighborhood of the computational domain, to be discussed later.) Finally, applying the inverse
Fourier transform, we obtain ABC’s in a matrix form, which enables easy practical implementation. In
fact, the entire procedure may be thought of as solving the linearized problem outside the computational
domain and then using the obtained solution to close the “truncated system” that is solved inside the
computational domain.

To conclude this introduction, let us point out an analogy to the previously investigated steady-state
case. (See ref. 8.) Namely, we are looking here for a solution to the unsteady problem that is defined on
an initially prescribed time interval (one period) and that meets the periodicity condition in time (at least
in the far field). To develop the ABC’s for this case, we solve a certain linear problem in the far field (by
means of the DPM). The latter problem is also formulated for the time interval of one period. The
ABC’s for the time-periodic case are basically constructed independent of any specific technique for
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integrating the Navier-Stokes equations inside the computational domain (as the ABC’s (ref. 8) were
constructed irrespective of any specific way for actual computation of the steady state). Based on the
assumption of periodicity in time, these boundary conditions simply close the system that is solved
inside the computational domain; the closure is constructed for the time interval of one period. In prac-
tice, however, achieving the true oscillatory regime may require long-time computational runs that
cover many periods. During this long-time integration, each moment we need to update the external
boundary data using the ABC’s (i.e., each time step) we treat the flow as it were already time-periodic
(in some generalized sense, see section 3). In so doing, the boundary conditions should guarantee only
the desirable far-field behavior of the solution. This behavior is actually determined by the condition
that all perturbations vanish at infinity (as in refs. 8, 11, and 12 when we were treating the external
boundary data on each iteration as already steady and demanding that the ABC’s ensure the decrease of
the solution to the linearized problem at infinity).

This paper is organized as follows. In section 2, we describe the basic formulations of the problems.
Specifically, in subsection 2.1 we describe a geometric setup typical for the numerical solution of exter-
nal flow problems, i.e., configurations of the finite computational domain and its infinite exterior. In
this subsection, we also introduce the flow equations (parabolized Navier-Stokes) and linearize them in
the far field against the constant free-stream background. In so doing, we obtain a coupled problem,
which is nonlinear inside the finite computational domain and linear outside it. Then, assuming that the
period of oscillating motion is known, we Fourier transform the exterior linear system with respect to
time and obtain an equivalent family of steady-state systems. These steady-state systems must be solved
as a part of the solution to the aforementioned coupled problem. However, we do not solve them
directly since the corresponding domain is still infinite. Instead, we equivalently replace each of the
exterior linear steady-state systems by the generalized Calderon pseudodifferential equation formulated
at the external boundary of the computational domain. To calculate the pseudodifferential operation
(projection) we need a special auxiliary problem that is first formulated on the entire plane for the lin-
earized thin-layer equations (after the Fourier transform in time) with a certain compactly supported
right-hand side. Solvability of this auxiliary problem (in the sense of tempered distributions) is studied
in subsection 2.2. Then, in subsection 2.3, we show how one can replace the original auxiliary problem
formulated on an unbounded domain (entire plane) by a new problem formulated on some rectangle so
that the solutions of the two problems are in a certain sense close to each other.

Section 3 of this paper is devoted to numerics. In subsection 3.1, we introduce a finite-difference
scheme that approximates the linearized thin-layer equations. Since we discretize the equations not only
in space but also in time, we now get a finite (discrete) series instead of the original infinite Fourier
series which implies that the family of steady-state systems to be solved outside the computational
domain becomes finite as well. In subsection 3.2, we construct a difference analogue to the auxiliary
problem on the rectangle, describe the numerical algorithm for its solution (referring to our previous
work for some details) and briefly address our somewhat non-standard concept of convergence for the
solutions of the difference auxiliary problem. Finally, in subsection 3.3 we show how one uses the
recently formulated difference auxiliary problem and obtains difference analogue to the Calderon
boundary pseudodifferential projection. Using this difference boundary projection and also calculating
the generalized difference potential, we actually compute the nonlocal DPM-based ABC’s. The ABC’s
are first obtained in the Fourier variables and then, after implementing the inverse transform, in the
physical variables as well. Finally, section 4 contains some conclusions and possible generalizations.

2. Basic Formulations

2.1. Governing Equations and Geometric Setup

Let us start with the parabolized Navier-Stokes equations, which are the same as the thin-layer
equations for two dimensions (see ref. 18 by Anderson, Tannehill, and Pletcher):
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(1)

Here,x andy denote the Cartesian coordinates,u andv denote the Cartesian velocity projections,ρ
denotes the density,p denotes the pressure,ε denotes the internal energy,µ denotes the viscosity, andγ
denotes the ratio of specific heats. To derive the last of equations (1), we assume that the gas is perfect
and that the Prandtl numberPr = µcp/κ is constant (κ is the heat conduction coefficient). We denote the
free-stream parameters, specifically,u0, v0, p0, ρ0, ε0, andµ0, by the subscript “0.” We additionally
assume thatv0 = 0 andu0 > 0, which does not imply any loss of generality. The system (1) is written in
dimensionless form. The following scales were used to obtain dimensionless quantities:u0 was used for

velocity;ρ0 for density,ρ0u0
2 for pressure,u0

2 for internal energy,µ0 for viscosity, characteristic sizeL
(typically, airfoil chord) for all distances, andL/u0 for time. The factor 1/Re that multiplies the viscous

terms in equations (1) arises from the nondimensionalization. Here,  is the Reynolds

number.

Note that in our previous work (refs. 8, 11, and 12) we used the full Navier-Stokes equations to con-
struct the ABC’s for steady-state problems. In this paper, we are going to use the thin-layer system
(eqs.(1)). This system appears to apply quite well to the description of certain viscous flows (ref. 18), in
particular, the far-field flows that we are studying hereafter. Moreover, for the thin-layer system
(eqs.(1)) we can justify some results on the solvability of its linearized counterpart onR2, which is
important for the general justification of our construction of ABC’s. Finally, the usage of equations (1)
instead of the full Navier-Stokes equations may save an appreciable amount of computer resources, as
will be seen from further consideration.

Let us now assume that the actual values ofu, v, p, ρ, ε, andµ in the far field only slightly deviate
from the corresponding free-stream parameters. For dimensionless quantities, this means

(2)

where

Here, M0 = u0(γp0/ρ0)
−1/2 is the Mach number at infinity, which is always assumed to be less than

unity. By substituting expressions (2) into equations (1) and retaining only the first-order terms with
respect to small perturbations, , , , , and , we obtain the following system of linear partial
differential equations with constant coefficients:

∂ρ
∂t
------ ∂ρu

∂x
--------- ∂ρv

∂y
---------+ + 0=

ρ∂u
∂t
------ ρu

∂u
∂x
------ ρv

∂u
∂y
------ ∂p

∂x
------+ + +

1
Re
------ ∂

∂y
-----µ∂u

∂y
------=

ρ∂v
∂t
----- ρu

∂v
∂x
------ ρv

∂v
∂y
----- ∂p

∂y
------+ + +

1
Re
------ 4

3
--- ∂

∂y
-----µ∂v

∂y
-----=

ρ∂ε
∂t
----- ρu

∂ε
∂x
------ ρv

∂ε
∂y
----- p

∂u
∂x
------ ∂v

∂y
-----+ 

 + + +
1

Re
------ µ ∂u

∂y
------ 

 2 4
3
---µ ∂v

∂y
----- 

 2 γ
Pr
------ ∂

∂y
-----µ∂ε

∂y
-----+ +=















Re
ρ0u0L

µ0
---------------=

ρ 1 ρ̃+= u 1 ũ+= v ṽ= µ 1 µ̃+= p γ M0
2( ) 1– p̃+=

ε γ 1–( )γ M0
2[ ] 1– ε̃+= 




ρ̃ 1« ũ 1« ṽ 1« µ̃ 1« p̃ γ M0
2( ) 1–«

ε̃ γ 1–( )γ M0
2[ ] 1–«

ũ ṽ p̃ ρ̃ ε̃ µ̃
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(3a)

where

(3b)

The system (3) is the linearization of equations (1) against the free-stream background. We omit the
tilde in equations (3) since we are going to deal only with linear equations in perturbations henceforth.

Additionally, we used the equation of state  (more precisely, its linearization

) to eliminate internal energy from equations (3).

We have mentioned that equations (3) will be used for the description of fluid motion in the far
field. Let us now define a general geometric setup for the problem under consideration. The original
Navier-Stokes equations are integrated on a grid (e.g.,C-type) generated around the airfoil; this grid
covers the finite computational domain which is denotedDin hereafter. (See fig. 1.) We henceforth
assume that the linearization (eqs. (3)) is valid outside the computational domainDin, i.e., on its com-
plementDex. (See fig. 1.) This assumption is true for large computational domains, i.e., far enough from
the immersed body. As we approach the airfoil, the possibility of linearization inDex can always be ver-
ified a posteriori by analyzing the corresponding computational results (as was done in refs. 11 and 12
for the steady-state case).

To integrate the Navier-Stokes equations on the grid insideDin, we use some finite-dimensional
approximation of these equations. The actual type of the resulting discrete operator (i.e., finite-
difference, finite-element, etc.) is not that important from the standpoint of constructing the ABC’s; for
definiteness we assume that the Navier-Stokes equations are integrated by means of a finite-difference
scheme. To begin with, we also suppose that this scheme is fully explicit in time. We may think that we
already know the solution for the time leveltl on the entire grid, in particular,l = 0 implies the initial
data. When we advance one time step, i.e., calculate the solution for the levelt l+1 by means of the
scheme, we cannot obtain this solution for the whole grid since some nodes located near the external
boundary ofDin will be missing. The actual location of missing nodes depends on the specific structure
of the scheme stencil. For example, a typical central-difference second-order approximation to the spa-
tial part of the Navier-Stokes operator on a structured grid requires a 3× 3 stencil. Using such a spatial
approximation combined with an explicit integration procedure in time, we can obtain the solution on
the levelt l+1 at all nodes, except for those that belong to the outermost coordinate row of the grid (des-
ignatedΓ1 in fig. 1). To advance the next time step (t l+2) we will have to somehow determine these
missing values of the solution on the levelt l+1. This will be done by means of solving the linearized sys-
tem in Dex (i.e., by representing its solution in the form of the generalized potential for each Fourier

C
∂u
∂t
------ D

∂u
∂x
------ F

∂u
∂y
------ H

∂2u
∂y2
---------+ + + 0=

u

u

v

p

ρ

= C

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 M0
2––

= D

1 0 0 1

1 0 1 0

0 1 0 0

0 0 1 M0
2––

=

F

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

= H
1

Re
------

0 0 0 0

1 0 0 0

0 4 3⁄ 0 0

0 0 γPr 1– Pr 1– M0
2––

–=

















ε 1
γ 1–
----------- p

ρ
---=

ε̃ 1
γ 1–
----------- p̃

1

γ M0
2

-----------ρ̃– 
 =
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mode). In other words, using the solution to equations (3) inDex, we close the system of difference
equations inside the computational domainDin. The closure we obtain is actually the desirable ABC’s.

 Note that in the case of steady-state problems the ABC’s (ref. 8) were also used to close the subdef-
inite system of difference equations insideDin. As previously mentioned, boundary conditions (ref. 8)
were implemented in references 11 and 12 together with the pseudo-time iteration procedure for achiev-
ing the steady state. (See refs. 13–15.) From an algorithmic standpoint, this approach is almost the same
as the true integration in time, so the ABC’s (ref. 8) were applied on the upper time level for each itera-
tion. However, there is an essential difference between the approach in reference 8 and the technique to
be described in this paper. Namely, the former is intended only for the treatment of steady-state prob-
lems and is based on the linearized stationary equations, and the latter will take into account the previ-
ous evolution of the solution in time.

Additionally, let us note that in the case of implicit schemes we also need ABC’s that will complete
the system of difference equations insideDin. Indeed, while integrating the Navier-Stokes equations by

Figure 1.  Configuration of domains.

y

0
X x

Inflow Outflow

Y/2

D0
Y

–Y/2

Dex Din
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means of an implicit scheme one has to solve a certain discrete system on the upper time level (tl+1),
whereas the data from the lower time level(s) play the role of forcing terms. This system will obviously
be subdefinite unless we specify additional relations that connect the values of unknowns in the grid
nodes located near the external boundary. In particular, for the previously-mentioned example of a
structured grid and central differences on the 3× 3 spatial stencil, these additional relations (i.e., the
ABC’s) should connect the values of the solution at the penultimate (the curveΓ in fig. 1) and outermost
rows of grid nodes. (See also refs. 8, 11, and 12.) Including the missing relations provided by the ABC’s
into the system solved on the upper time level, we close this system and then advance the next time step.

Let us now provide an exact formulation of the problem. First, we select those nodes of the grid
where the solution can no longer be determined by the scheme but must be obtained by means of special
additional relations (i.e., by means of the ABC’s). We designate this set of nodesν1. Second, we select
those nodes of the grid where we need to know the solution in order to obtain it onν1 with the help of
the ABC’s. The latter set is designatedν. Bothν andν1 will depend on the structure of the specific sten-
cil. In particular, for the 3× 3 stencil on a structured grid,ν andν1 correspond to the penultimate and
outermost rows of grid nodes, respectively. (Also see refs. 8, 11, and 12.) Without loss of generality, we
assume that the artificial boundaryΓ (see fig. 1) is formed by the penultimate row of nodesν, so that all
nodesν1 that form the curveΓ1 (see fig. 1) already belong toDex (i.e., to the “linear zone”).

 Then, we designate the time period byT. Clearly, we can further consider our problem for the time
interval [0,T] without loss of generality. We will also need the following brief notations:

, , , and . The closure of the
finite-difference system in , which we are looking for and which should be provided by the ABC’s,
is actually a set of relations expressing  in terms of some data specified onΓT. As previously men-
tioned, these relations will be based on the solution to the linearized system (3) in. The latter sys-
tem is supplemented (on ) by the periodicity condition in time,

(4)

and the free-stream condition at infinity,

(5)

The choice of the data onΓT that “drive” the ABC’s is closely connected to the concept ofclear trace,
delineated in references 9 and 10. The question of the possible proper constructions of clear traces for
equations (3) may require a special thorough investigation in addition to the general analysis from refer-
ences 9 and 10; such an investigation is not a direct subject of this paper. Therefore, we will not com-
ment on this question in our further discussion, we only point out the actual construction we use.
Namely, let us first represent the vector functionu(x,y,t) in the form of a Fourier series in time for any
space point (x,y),

(6)

where

(7)

Dex
T Dex 0 T,[ ]×= Din

T Din 0 T,[ ]×= ΓT Γ 0 T,[ ]×= Γ1
T Γ1 0 T,[ ]×=

Din
T

u Γ1
T

Dex
T

Dex
T

u
t 0=

u
t T=

= x y,( ) Dex∈( )

u 0 asx2 y2+ ∞→→ t 0 T,[ ]∈( )

u x y t, ,( ) ûn x y,( )e
int

2π
T
------

n ∞–=

n ∞=

∑=

ûn x y,( ) 1
T
--- u x y t, ,( )e

int
2π
T
------–

td

0

T

∫= n 0 1± 2± …, , ,=( )



9

Instead of considering equations (3a), (4), and (5), we henceforth considerDex the family of “sta-
tionary” systems,

(8)

parameterized by the frequencyωn = 2πn/T, n = 0, ±1, ±2, …, and supplemented at infinity by the
boundary conditions

(9)

which directly follow from formula (5). The matricesC, D, F, andH in the system (8) are the same as in
formula (3b).

For each frequencyωn we consider the pair of functions  (specified onΓ) as the data that

“drive” the ABC’s; here,ζ is the normal toΓ. (Note that if the interior solution is already computed by

means of the scheme inside , then  and  can be easily calculated.)

Our ultimate goal will be to provide a full classification of those and only those functions

(defined onΓ) that generate a solution  to system (8) (with boundary conditions (9) defined on
Dex and such that its trace onΓ coincides with the “source” function itself, i.e.,

(10)

As will be seen from further consideration, the corresponding set of functions  can be

described as an image of a certain boundary projection operator. In other words, the functions

 will satisfy some boundary operator equation with projection. (The equation of this type was

mentioned in the introduction as the one equivalent to the linearized exterior problem.) Let us designate

the corresponding projection operator by  (we actually construct this operator in section 3). Then,

specifying any function  (from inside Din), we apply  and consider the projection

as the right-hand side in equality (10) for the problem (eqs. (8)–(10)).

After solving the problem (eqs. (8)–(10)) onDex, we find the trace of its solution onΓ1 (i.e., onν1),
which in turn enables us to obtain the missing boundary relations that close the system of difference

equations inside . These relations (i.e., the ABC’s) are derived using the inverse Fourier transform.

They can be symbolically written as
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n

∂ζ
----------

v̂Γ
n ∂v̂Γ

n

∂ζ
---------,
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(11)

where the operatorR represents some (smooth) interpolation of the discrete functions along the curveΓ,
and the operator  involves the calculation of the generalized potential to solve the problem
(eqs.(8)–(10)). The specific structure of all operators from formula (11) will be delineated in section 3,
where we actually construct their discrete counterparts.

Let us make a few important remarks. First, to formally close the system solved in, we have to

obtain additional relations between the values of the unknowns onΓT and on . Such relations would

provide ABC’s that are completely independent of any specific numerical procedure employed inside

. However, to simplify our task and at the same time only slightly compromise the previously-

mentioned independence, we take into account that we almost always integrate the Navier-Stokes equa-
tions step-by-step in time (explicitly or implicitly). Therefore, we do not have to construct such ABC’s
that would connect the values of the solution atν and atν1 for all time moments . It suffices to
determineu, v, p, andρ atν1 only for t = T (i.e., at the upper time level) since for all previous moments
these values have been determined when calculating previous time steps. Moreover, the formulation of
the problem (eqs. (8)–(10)), where the right-hand side from equality (10) belongs to the projection

image, , assumes that these data are a result of operating by on the Fourier trans-

form  of some time-periodic function. However, in conducting the step-by-step integration in

time, the actual data  may not be periodic until we achieve a true oscillatory regime. There-

fore, as mentioned in the introduction, any time we use the ABC’s we implement a certain generalized
treatment of the external flow as being already time-periodic. Namely, instead of the true boundary data

 at ΓT, we use the best approximation of this data by periodic functions in the sense of least

squares. This approach will be delineated in section 3, which is devoted to numerics.

 Second, we are unable to directly solve the problem (eqs. (8)–(10)) onDex since the domain is infi-
nite. Handling of this problem will require the additional truncation. Recall that we have already trun-
cated the original infinite domain and have obtainedDin; now we also truncateDex in order to get a new
linear problem formulated on a finite domain, and therefore, available for solution on the computer.
This issue is addressed in subsection 2.3.

Third, we certainly will not solve the problem (eqs. (8)–(10)) every time we need to obtain a closed
system insideDin (i.e., each time step). Instead, using the linearity of the problem, we will specify some
basis in the space of boundary data and solve the problem (eqs. (8)–(10)) one time for each basis func-
tion. This approach will enable us to obtain the ABC’s in matrix form, which is very convenient for
practical computing. (Also see refs. 8, 11, and 12.)

 Ultimately we will deal only with the finite-difference formulations and, consequently, with the
finite Fourier series (instead of the infinite series (6), see section 3). In so doing, the discretization in
time for the linearized exterior problem in  should not necessarily coincide with the one used for the
Navier-Stokes scheme inside . A more convenient method may be to use interpolation in time,
which was previously proposed in reference 16.
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ûΓ
n ∂ûΓ
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Finally, let us mention that since we need to know the solution onΓ for the whole periodT to
restore the solution onν1, the first few time steps (until the total time reachesT ) will require some spe-
cial treatment. It might be based on the usage of either a larger grid or some other external boundary
conditions for the initial stage of integration in time.

We now proceed to the actual construction of the operators involved in formula (11). This construc-
tion will be essentially the same for all wavenumbersn (n is contained as a parameter in the correspond-
ing expressions hereafter).

 As was mentioned before, the computation of the ABC’s (eq. (11)) consists of two stages. First we
apply the projection  to provide the proper boundary data (right-hand side of equality (10) for the
problem (eqs. (8)–(10)). Then we find the solution to the problem (eqs. (8)–(10)) in the form of the gen-
eralized potential (operator ). Both of these stages will require the application of the DPM. (See
refs. 9 and 10.) In particular, it appears that the computation of  and  requires the solution of the
sameauxiliary problem (AP) described in sections 2.2 and 2.3 for the continuous formulationand in
section 3.2 for the difference formulation. This AP is actually the main element of the DPM-based
approach. The Green operator of the AP plays in the theory of generalized potentials approximately the
same role as the Green function (or the fundamental solution) plays in classical potential theory. (See
refs. 9 and 10.) The AP is formulated on the entire plane (x,y) for the inhomogeneous counterpart of
system (8) with a certain compactly supported right-hand side  (to be specified
later on). Namely, we will need to solve the following system,

(12)

on R2, , and we will require that the solution be unique in the class of functions van-
ishing at infinity. In other words, system (12) is supplemented by the following boundary condition,

(13)

which is the same as boundary conditions (9).

Once we are able to solve the AP (eqs. (12) and (13)), we can construct the boundary operator,
properly formulate the problem (eqs. (8)–(10)), and finally obtain its solution in the form of a general-
ized potential. This is actually a very brief description of our DPM-based approach; it will be delineated
in section 3 for the discrete formulation of the problem. Now we will investigate the solvability of the
AP (eqs. (12) and (13)).

2.2. Solvability of Linearized Problem on Entire Plane

 We will look for the solution to the AP (eqs. (12) and (13)) in the space of tempered distributions
G ′ (see ref. 19 by Hörmander or ref. 20 by Vladimirov), which is a conjugate space to the spaceG of all
infinitely smooth functions defined onR2 that decrease at infinity with all their derivatives faster than
any power of (x2 + y2)−1/2. Take the Fourier transform

(14a)

(14b)

PΓ
n

Pex
n
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n Pex

n

f̂n f̂ 1
n f̂ 2
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iωnCûn D
∂ûn
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of both sides of system (12) and represent the result in the form of a matrix equation,

(15)

Note that in system (15) and henceforth in this subsection we drop the superscriptn to simplify the nota-
tions. Then, the symbolQ (eq. (15)) is given by

(16)

We first show that system (15) is solvable inG ′. For the time being, we do not need any restrictive

assumptions in regard to; as previously mentioned, is compactly supported , and with-

out loss of generality we may think that  is absolutely integrable onR2 . Then, its Fourier

transform  is bounded and continuous onR2; consequently, if we formally write down the solution to
system (15) as

(17)

then the properties of the right-hand side in equality (17) are fully determined by the inverse symbol

Q−1. Indeed, it is well known (ref. 20) that if the right-hand side of equality (17) is locally absolutely

integrable onR2 then it defines the tempered distribution, i.e., the generalized function fromG ′. The lat-

ter will coincide (in the sense of distributions) with the classical function  everywhere

on R2, except for the set of singularities of  (if any). Since in our case the function

 is continuous and bounded onR2, then it suffices to determine whether the function

belongs to .

To do this, we have to find all singularities of . Calculating the determinant of ,
we obtain

(18)

Hereξ and η are the variables andω, M0, Re, Pr, andγ are parameters. We emphasize that both vari-
ablesξ andη are supposed to be real (see formulas (14)); however, the coefficients ofQ(ξ, η) are, gen-
erally speaking, complex. Thus, to find singular points of the symbolQ (eq. (16)), one has to find the
real roots ofQ(ξ, η) (eq. (18)), which actually implies to find common real roots of two polynomials,
ℜQ(ξ, η) andℑQ(ξ, η). First, the point (ξ = −ω, η = 0) is clearly one of such common roots. Then, we

Q
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note thatℑQ(ξ, η) turns into zero on the two entire straight lines,ξ = −ω and η = 0. Moreover,
ℜQ(ξ, η) has no other roots on the lineξ = −ω, except forη = 0. Further, substitutingη = 0 into the
equationℜQ(ξ, η) = 0 (see formula (18)) and assuming thatξ ≠ −ω, we find the following two roots of

ℜQ(ξ, η) = 0 that belong to the lineη = 0:  and . We also observe that if

ω = 0 (which corresponds to the steady-state flows), then all three roots, (−ω, 0), , and

, merge into one.

In an attempt to find other real roots (if any) ofQ(ξ, η) (eq. (18)), we divide the equation
ℑQ(ξ, η) = 0 by (ω + ξ)η2/Re. (This is possible since we have already proven that no other zeros exist
on the two linesξ = −ω andη = 0, except for those already found.) The resulting equation,

(19)

is of fourth order, and taking into account that the equationℜQ(ξ, η) = 0 (see formula (18)) is of sixth
order, we conclude that the polynomialQ(ξ, η) may have not more than a finite number of isolated real
roots in total (three of which have already been found). We emphasize here that this property (finite
number of isolated real roots) presents an essential difference between the problem under investigation
and classical acoustics problems in which the viscous terms in the governing equations are usually
neglected. Namely, for the acoustics equations (i.e., linearized Euler equations) the singular points of
the symbol are no longer isolated. They usually form a curve on the planeR2 which may cause notice-
able difficulties with justification of the uniqueness of solution. These difficulties are similar to those
that arise in studying the Helmholtz equation, which may be referred to as describing acoustics in the
stationary medium. We do not deal with Helmholtz-like equations in this paper; we only note that con-
trary to the acoustics case, system (12) is presumably easier from this standpoint since the proof of
uniqueness appears to be elementary. (See proposition 4.)

Since equation (19) is of second order with respect toξ we can resolve it for eachη and obtain
explicit function(s)ξℑ = ξℑ(η). Because we are interested only in real solutions, we have to consider a
few different cases.

First, assume thatω ≠ 0. Then, rewrite equation (19) as

(20)

and observe that, if , then equation (20) degenerates and therefore has a

unique real solution  for anyη. If , then we can easily make

sure that the discriminant

(21)
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is always positive, which means that equation (19) has two different real solutions,  and

 for any η. If , then the conditionD ≥ 0 (see formula(21))

imposes certain restrictions onη. Namely, we have

(22)

where

Therefore, in this case the real solutions to equation (19),  and , exist only
for η within the above range. (See inequality (22)).

Now consider the caseω = 0 (which corresponds to the steady-state problem). From equation (19),
we easily derive

(23)

Equation (23) has real solutions,  and , only for

. Otherwise, we conclude that the equationℑQ(ξ, η) = 0 for ω = 0 has no

other real roots except for (ξ = 0, η = 0) and therefore, the same is true for the equationQ(ξ, η) = 0.

In practice, we have calculated explicit symbolic expressions for the functions ,

, and  usingMathematica. (See ref. 21 by Wolfram.) (These expressions

are not presented here because they are fairly cumbersome.) Then, substituting the functions

, , and  into the second equation,ℜQ(ξ, η) = 0, we obtain

the algebraic equations with respect to only one variableη. Clearly the above equations (which are dif-

ferent for the different solutions, , , and ) may have real

root(s) if and only if the original equationQ(ξ, η) = 0 has other real zero(s) besides those that have

already been found, (−ω, 0), , and . Therefore, we finally have reduced the

question about the real zeros of the equationQ(ξ, η) = 0 to the question about the real root(s) of certain
algebraic equations of one variable.

Regrettably, the resulting equations (after the substitution of , , and
 into ℜQ(ξ, η) = 0) appear to be too complicated for obtaining general expressions for

their real root(s). However, we may implement the following semi-numerical approach which provides
fairly convincing results.

First, note that the caseω = 0 seems to be the simplest one. This case actually admits rigorous anal-
ysis without doing any simplifying assumptions. As previously mentioned, equation (23) has no real

ξℑ
(1) ξℑ

(1) η( )=

ξℑ
(2) ξℑ

(2) η( )= M0
2 4

3
--- 1

Pr
------+ 

  7
3
--- γ

Pr
------+ 

  1–
<

3PrRe2

8γ
------------------- 1

M0
2

-------- 1 1
Pr
------+ 

 – D1+
 
 
 

–
1 2⁄

η 3PrRe2

8γ
------------------- 1

M0
2

-------- 1 1
Pr
------+ 

 – D1+
 
 
 1 2⁄

≤ ≤

D1
1

M0
4

-------- 1 1
Pr
------+ 

 2 16
3
------ γ ω2

PrRe2M0
2

------------------------- 7
3
--- γ

Pr
------+ 

  4
3
--- 1

Pr
------+ 

  7
3
--- γ

Pr
------

1

M0
2

-------- 4
3
--- 1

Pr
------+ 

 –+
1–

–=

ξℑ
(1) ξℑ

(1) η( )= ξℑ
(2) ξℑ

(2) η( )=

ξ2 7
3
--- γ

Pr
------

1

M0
2

-------- 4
3
--- 1

Pr
------+ 

 –+
η2

M0
2

-------- 1 1
Pr
------+ 

  4
3
---γ η4

PrRe2
----------------+=

ξℑ
(1) ξℑ

(1) η( )= ξℑ
(2) ξℑ

(2) η( )=

M0
2 4

3
--- 1

Pr
------+ 

  7
3
--- γ

Pr
------+ 

  1–
>

ξℑ
(0) ξℑ

(0) η( )=

ξℑ
(1) ξℑ

(1) η( )= ξℑ
(2) ξℑ

(2) η( )=

ξℑ
(0) ξℑ

(0) η( )= ξℑ
(1) ξℑ

(1) η( )= ξℑ
(2) ξℑ

(2) η( )=

ξℑ
(0) ξℑ

(0) η( )= ξℑ
(1) ξℑ

(1) η( )= ξℑ
(2) ξℑ

(2) η( )=

ωM0

1 M0–
----------------- 0,

 
 
  ωM0

1 M0+
-----------------– 0,

 
 
 

ξℑ
(0) ξℑ

(0) η( )= ξℑ
(1) ξℑ

(1) η( )=
ξℑ

(2) ξℑ
(2) η( )=



15

solutions for  (which implies that the determinant (eq. (18)) has no real roots);

for  equation (23) degenerates and any pair (ξ, η) of the kindξ is arbitrary,

η = 0 is its root. Substituting this root intoℜQ(ξ, η) = 0 (see eq. (18)), we obtain ,

which yieldsξ = 0. Therefore, we did not find any new real zero. For , equa-

tion (23) has two different real solutions for anyη; moreover, .

Since all powers ofξ in ℜQ(ξ, η) are even, we do not need to separately consider  and

. Substituting  into ℜQ(ξ, η) = 0, we obtain the following eighth-

order equation with respect toη: aη8 + bη6 + cη4 = 0, where the coefficientsa, b, andc are obviously
real. The explicit expressions fora, b, andc were obtained by means ofMathematica (see ref. 21); we
do not present them here because they are cumbersome. However, using these expressions we can prove
thata > 0, b > 0, andc > 0. Then, it becomes clear that there are no other real roots except for the one

we have already found,η = 0 (which also yieldsξ = 0). Indeed, the equationaη4 + bη2 + c = 0 for
a > 0, b > 0, andc > 0 may have only essentially complex rootsη. Therefore, we conclude that for
ω = 0 the symbolQ (eq. (16)) has only one singular point (ξ = 0, η = 0).

Recall that all equations under study generally depend on five real parameters,ω, M0, Re, Pr, andγ.
To simplify our task, we fix the values of some of these parameters. Let us setγ = 1.4 (two-atom gas)
and Pr = 0.72 (air). This choice of values for the ratio of specific heats and for the Prandtl number,
respectively, is most frequently used since it is closely related to numerous practical problems; we will
not consider any other numerical values for these two parameters. We now investigate another simple

case,ω ≠ 0, . Then, we have

Substituting this expression intoℜQ(ξ, η), we obtain a sixteenth-order polynomial with respect toη.
This polynomial contains only even degrees, namely, 0, 2, 4, 6, 8, 10, 12, 14, and 16. It is possible to
make sure (we always useMathematica (ref. 21) to perform cumbersome transformations) that the coef-
ficients of the above polynomial are positive for allω (ω ≠ 0) and for allRe; consequently, the corre-
spondingsixteenth-order equation has no real roots. Therefore, the determinant (eq. (18)) has no other
real zeros in this case as well.

We have finally come to the most complicated case, which so far allows us only approximate inves-

tigation. Let . Then, we have to clarify whether the functions

and/or  turn into zero forη within the range given in inequality (22). Both functions are

actually of a general algebraic type (they contain non-integer powers), which means we have only a
remote possibility of accurately (analytically) showing that they have no real roots, particularly because
these functions depend on many parameters. At least at this point we are unable to construct the corre-
sponding rigorous proof; therefore, we use the following graphical approach.
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 To start, we select some representative discrete set of the parameters involved. The range for the
Mach number is known, so we simply choose a few points within this range. As for the Reynolds
number, the representative values for the graphical tests we are conducting may be chosen to be about a
few thousand. Indeed, we are not studying Stokes’ flows that correspond to very lowRe. As for typical
laminar solutions for the flows around an airfoil, they apparently cease to exist starting with Reynolds
numbers at around a few thousand. Moreover, for turbulent flows with true molecular Reynolds num-
bers of a few million, one can successfully model turbulence in the far field by introducing a new effec-
tive value of the Reynolds number, which also appears to be around a few thousand. (See ref.12.)
Finally, recall that the periodicity of flow in time is caused by some external influence, and reference 7
reports that the maximum effect (i.e., response) of such an influence corresponds to nondimensional fre-
quencies of about 1. Therefore, we will not consider frequencies much less than unity or much greater
than unity. The upper bound for the band of frequencies originates from the numerics since we are
going to pass from series (6) to the finite Fourier series while actually solving the problem on the com-
puter. (See section 3.)

We also note that the limits forη (see inequality (22)) do not depend on

the sign of ω. Moreover, since ,

 (eq. (20)), and all powers ofξ and (ω + ξ) in

ℜQ(ξ, η) are even, it suffices to investigate the behavior of only one of the above functions for both
positive and negative values ofω. We do this by plotting the corresponding graphs for the following
specific values of the parameters involved:ω = ±0.5, ±1, ±10, and±50; M0 = 0.4 and 0.7;Re= 1000,
2000, and 5000; andγ andPr are still 1.4 and 0.72, respectively. The graphs drawn with the help of
Mathematica (ref. 21) in different scales show that neither of the above curves intersects the real axis.
(We do not present these plots here because they are not of interest except to show that the correspond-
ing curve has no zeros). Relying on this approximate graphical investigation, we may expect that at least
within some range of the parameters involved the symbolQ (eq. (16)) has no other real singular points,
except for those that have already been found.

We use an analogous graphical approach for the case . We have no pre-

scribed range forη in this case. However, it is clear that the asymptotics of the functions

 for largeη is η8, so it suffices to study the behavior of the above functions only on

some finite interval ofη. We usedMathematica (ref. 21) to plot the corresponding graphs for the same
values ofω, Re, γ, andPr as mentioned before and forM0 = 0.8 and 0.9. The graphs (drawn in different

scales for differentη-intervals, up to−105 < η < 105) show that neither of the curves has real zeros in
this case as well.

Summarizing, we conclude that at least for a certain reasonable range of the parameters involved,
M0, Re, Pr, γ, andω, we have justified the following proposition.

Proposition 1: The symbolQ(ξ, η) (eq. (16)) has only three real singular points on the(ξ, η)-plane:

(−ω, 0), , and . Forω = 0, these three points merge into one.

To determine whether the inverse symbolQ−1(ξ, η) belongs to , it suffices to investigate
the behavior (integrability) of this matrix function near the three singularities. This investigation actu-
ally means that we have to check integrability of each of the 16 elements ofQ−1(ξ, η). These elements
are given by , whereδi, j are the corresponding cofactors.

ξℑ
(1) η M0 Re Pr γ ω, , , , ,( ) ξℑ

(2) η M0 Re Pr γ ω–, , , , ,( )–=

ξℑ
(2) η M0 Re Pr γ ω, , , , ,( ) ξℑ

(1) η M0 Re Pr γ ω–, , , , ,( )–=

M0
2 4

3
--- 1

Pr
------+ 

  7
3
--- γ

Pr
------+ 

  1–
>

ℜQ ξℑ
1 2,( ) η( ) η,( )

ωM0

1 M0–
----------------- 0,

 
 
  ωM0

1 M0+
-----------------– 0,

 
 
 

Lloc
1 R2( )

Q 1–( ) j i, δi j, Q 1,⁄ i j, 4≤ ≤=
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Let us first concentrate on the singularity (ξ = −ω, η = 0) for ω ≠ 0. We replace the above expres-
sions for the elements of inverse symbol by their equivalents,  (  means
complex conjugate), to make the denominator purely real. Since both the denominator and the
numerator  are the sums of monomials of the typeconst· (ω + ξ)kηlξm (hereconst depends onM0,
Re, Pr, γ, andω, andk, l, m are nonnegative integers), then it would be sufficient to make sure that any
expression of the sort

(24)

that originates from , 1≤ i, j ≤ 4, is integrable near (ξ = −ω, η = 0). Sinceω ≠ 0, then the
factorsξm do not contribute to the asymptotic behavior of expression (24) near (ξ = −ω, η = 0), which is
an essential difference in comparison with the caseω = 0. (See the following discussion.) Therefore, we
may investigate this asymptotic behavior by constructing Newton’s diagram (see ref. 22 by Walker)
with respect to only two variables,ω + ξ andη. Namely, we show in figure 2 the set of points (k, l) that
correspond to all monomialsconst· (ω + ξ)kηlξm involved in . The Newton diagram (ref. 22) is a
lower part of the convex hull of the above set. The diagram is shown by the dashed line in figure 2.
Those points (k, l) which belong to the Newton diagram determine the asymptotic behavior of  near
(ξ = −ω, η = 0).

More precisely, the asymptotic behavior of  near the singularity is determined not only by the
lowest degree monomials (see Newton’s diagram in fig. 2) but may also depend on some higher order
terms if the form

Figure 2.  Powers involved in the denominator  (black circles) and Newton’s diagram (dashed line) for ;
(ξ = −ω, η = 0), ω ≠ 0.

l

k0 1

1

QQ QQ

Q 1–( ) j i, δi j, Q( ) QQ( )⁄= Q
QQ

δi j, Q

const ω ξ+( )kηlξm•

QQ
------------------------------------------------------

δi j, Q( ) QQ( )⁄

QQ

QQ

QQ
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(25)

(which corresponds just to the previously mentioned lowest degree terms that constitute the Newton

diagram) degenerates under some conditions. However, in this specific case the form (eq. (25)) is

positive definite because  is positive for anyPr. Therefore, after some natural change

of variables (see the following text) the asymptotic behavior of the denominator becomes uniform

with respect to the polar angle, which implies that while investigating the integrability ofQ−1(ξ, η) one
may simply neglect all the higher-order terms (black circles above the dashed line on fig. 2) and con-
sider the expression

(26)

instead of equation (24). Furthermore, we may only increase the ratio (eq. (26)) by neglecting the third
term (~(ω + ξ)2η4) in equation (25). Indeed, it is easy to see that in doing so we only decrease the
denominator but still preserve its positive definiteness. Finally, eliminate thefactorsξm, for simplicity.
We have already mentioned thatξm do not contribute to asymptotics near (ξ = −ω, η = 0), ω ≠ 0. There-
fore, to estimate the integrals, we may replace these factors by appropriate constants, e.g.,

where minimum (min) and maximum (max) are found on a sufficiently small neighborhood of
(ξ = −ω, η = 0).

Thus, we have reduced the original question of integrability of  to checking the inte-
grability of the following function:

(27)

on some neighborhood of (ξ = −ω, η = 0). Because of the symmetry, it suffices to integrate func-
tion (27) only on one quadrant, for example,ω + ξ ≥ 0 andη ≥ 0. Moreover, since we are studying local
integrability, we also introduce some upper limits forω + ξ and forη, e.g.,ω + ξ ≤ 1 andη ≤ 1. Let us
now change the variables  and  and then proceed to the following integral:

(28)

Further, make another change of variables, from Cartesian (ζ, χ) to polar (ρ, θ) coordinates, and for
simplicity, truncate our rectangular domain, , which obviously
does not influence the result (integrable or not integrable). Finally, we obtain, instead of integral (28),

(29)

defAQ
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4
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9
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Re4Pr2M0
4
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3
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 2 8
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3
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 2 8
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QQ
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const ω ξ+( )kηlξm•

ξ4 M0
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From formula (29) one can easily derive the conditions sufficient for the integral to exist. Namely, they
are

(30a)

(30b)

(30c)

whereε is an arbitrarily small positive number.

We now have to make sure that all conditions (30) are satisfied for all cofactorsδi, j, 1 ≤ i, j ≤ 4.
First, we note that sincek and l are always nonnegative integers, then two conditions (eqs.(30b) and
(30c)) are met automatically. Then, to check the fulfillment of the third condition (eq.(30a)) one has to
accurately calculate all monomials involved in all cofactorsδi, j, 1≤ i, j ≤ 4 and analyze the powers (k, l)
for (ω + ξ)kηl. This step was done with the help ofMathematica. (See ref. 21.) In figure 3, we have col-
lected all the relevant powers (k, l) for all cofactorsδi, j, 1 ≤ i, j ≤ 4. We also show in figure3 the range
of powers (k, l) which satisfies conditions (30) (gray area). Using figure 3, one can easily conclude that
all monomials involved satisfy all conditions (30). Therefore, the inverse symbolQ−1(ξ, η) is abso-
lutely integrable near the singular point (ξ = −ω, η = 0) for ω ≠ 0.

Figure 3.  Black circles represent powers of the monomials in cofactors for (ξ = −ω, η = 0), ω ≠ 0. Gray area corresponds to
integrability conditions (30).
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The integrability ofQ−1(ξ, η) for ω = 0 near the singular point (ξ = 0, η = 0) is investigated by the
same method. We only note that sinceξ andω + ξ are now the same, both of them do contribute to the
asymptotic behavior ofQ−1(ξ, η) near (ξ = 0, η = 0). Therefore, the sets of monomials involved, as well
as the Newton diagram, for  will differ noticeably from those relevant to the caseω ≠ 0. Indeed, the
asymptotic behavior of the denominator  near (ξ = 0, η = 0) is now determined by the following
form (compare with expression (25)):

(31)

which corresponds to the Newton diagram presented in figure 4.

As in the caseω ≠ 0, the form  (eq. (31)) also appears to be positive definite since all five coef-
ficients in expression (31) are positive for allRe, Pr, andM0 < 1. However, the Newton diagram shown
in figure 4 consists of two straight intervals, whereas the one in figure 2 contains only one interval. This
difference is essential because now each of the aforementioned two intervals (see the two-component
dashed polygonal line in fig. 4) will determine its own domain of integrability for the expressions

(32)

Figure 4.  Powers involved in the denominator  (black circles) and Newton’s diagram (dashed line) for; (ξ = 0, η = 0),
ω ≠ 0.
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on the (k, l)-plane. Herek andl are the powers in the numerator of expression (32). Since the form

is not simply positive definite, but all powers involved are even, and each coefficient in formula (31) is
positive, we can find the corresponding domain of integrability on the (k, l)-plane independently for
each of the two parts of the Newton diagram. (See fig. 4.) To do this for either part of the diagram,
neglect those terms in the denominator which correspond to another part (in so doing, the denominator
may only decrease). Then, formally divide both the numerator and the denominator by the common fac-

tor ξ4. Using the changes of variables analogous to those previously implemented, we come to the fol-
lowing set of conditions sufficient for the integrability of function (32) near (ξ = 0, η = 0):

(33a)

(33b)

(33c)

and

(34a)

(34b)

(34c)

Note that three conditions (eqs. (33)) correspond to the upper part of the Newton diagram and three con-
ditions (eqs. (34)) correspond to its lower part. (See fig. 4.)

In figure 5, we show (with black circles) all powers (k, l) involved in all cofactorsδi, j, 1 ≤ i, j ≤ 4
for the caseω = 0. Gray areas on this figure correspond to the range of those coefficients (k, l) which
satisfy integrability conditions (33) and (34). Note that conditions (33c) and (34b) impose some addi-
tional restrictions onl andk for the upper and lower components respectively of the Newton diagram in
figure 5. We did not have such restrictions in the caseω ≠ 0. (See inequalities(30).) One can easily see
from figure 5 that all elements ofQ−1, , 1 ≤ i, j ≤ 4, are absolutely integrable near
(ξ = 0, η = 0) in the caseω = 0 as well.

Finally, we only have to show thatQ−1(ξ, η) is absolutely integrable on some neighborhood of each

of the singular points and  for ω ≠ 0. If we simply ensure that  is

integrable on the same neighborhood, then the integrability ofQ−1(ξ, η) follows. To do this, first note
that gradQ(ξ, η) ≠ 0 at either of these two points. Indeed, it is quite easy to see from equation (18) that

 at both  and . Then, refer to reference 23, wherein

Vainberg proves exactly the same statement we need, namely, the integrability of  on some
neighborhood of an isolated real zero of the polynomialQ(ξ, η) when gradQ(ξ, η) ≠ 0 at this point.
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Thus, we can finally formulate the following proposition.

Proposition 2: The inverse symbolQ−1(ξ, η) (eq. (16)) is absolutely integrable on any finite domain of
R2, i.e., .

In accordance with reference 20, proposition 2 immediately implies proposition 3.

Proposition 3 (existence):The system (15) is solvable inG ′ for any compactly supported ;

 in equation (15) is a Fourier transform of  (eq. (14b)).

 The solution to the AP (eqs. (12) and (13)) that we are looking for may generally be found by
means of the inverse Fourier transform (again, the superscriptn is omitted below),

(35)

Using the brief notation, we may rewrite formula (35) as . However, in doing so
we still do not know whether the function  (eq. (35)) satisfies boundary condition (13). Let us
first prove the following proposition.

Proposition 4 (uniqueness):If the solution  of system (12) satisfies the boundary condition (13), then
it is unique in the class of distributions vanishing at infinity.

Figure 5.  Black circles represent powers of the monomials in cofactors for (ξ = 0, η = 0), ω ≠ 0. Light-gray area corresponds
to integrability conditions(33). Middle-gray area corresponds to integrability conditions (34). Dark-gray area is common to
both conditions (33) and (34).
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Indeed, any function  that solves system (12) is actually an inverse Fourier transform of some solution

to system (15), . In turn, any distribution  that solves system (15) (see formula (17))

should coincide with the regular function  everywhere onR2 except at the three singu-

lar points ofQ(ξ, η) (since  has no singular points). Therefore, any other solution to system (15)

may differ from  only by a distribution with the support belonging to the three-point set

. Such a distribution may be only a finite sum ofδ-functions and

their derivatives. (See ref. 20.) Therefore, if  vanishes at infinity, then any other solution to

system (12) will differ from  by an inverse Fourier transform of a finite sum ofδ-functions and their
derivatives, and, consequently, it will not vanish at infinity since Fourier transforms ofδ-functions and
their derivatives are polynomials. (See ref. 20.) Thus, proposition 4 is justified.

Let us now select a finite ballB where

and construct a partition of unity, , where the functions  and  are infinitely smooth

and bounded onR2. The function  is identically zero outside the ballB + ε, therefore,  is identi-

cally zero inside the ballB − ε. Note that such functions always exist. (See, e.g., ref. 20.) Obviously,

. We will separately analyze each term on the right-hand side

of the above sum. First, it is clear that  because  is bounded and .

Therefore,  while . For the second term  we cannot yet con-

struct a general proof of its decay at infinity. The difficulties here arise from the fact that

 but , i.e., it is not absolutely integrable near infinity. Therefore, a general

proof may require an appropriate regularization of the corresponding oscillatory integral. However, we
retain this question for a future investigation. For the time being, we can formulate the following two
statements. Each will address the vanishing of the solution at infinity for some particular case (or in a
weaker formulation).

 First, assume that , which is actually not restrictive for our purposes. Then,
(we may treat the Fourier transform here in the sense of Plancherel, ref. 24). As mentioned before,

; however,  can be shown to be bounded onR2. Therefore, ,

which immediately yields . Thus, in this case the solution  to system (12) is rep-

resented as a sum of two terms, , where  while  (true vanishing in the

sense of boundary conditions (13) and , which may be treated as a “generalized decay”.
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û û( )ˆ ∨=
ˆ
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û û( )ˆ ∨=

û
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We also note here that the statement on uniqueness proven in proposition 4 also applies to the functions

from  since the polynomials obviously do not belong to .

Second, if we impose some additional restrictions on, namely, if we require that be sufficiently

smooth onR2 so that , then we obtain a true decay for the second term as well,

 while . Therefore, for a more particular class of the right-hand sides we

may affirm that the problem (eqs. (12) and (13)) is uniquely solvable inG ′. We note that for some other
cases (see ref. 9) such a restriction of the class of admissible right-hand sides does not influence the con-
struction of a DPM-based numerical algorithm. We will not rigorously formulate and prove this state-
ment for the specific case currently under study. However, we expect that this property does take place.
These expectations are based on the numerical experience. (See refs. 8, 11, and 12.)

2.3. Truncation of Linearized Problem

 As mentioned in section 2.1, we are not going to directly solve the problem (eqs. (8)–(10)). Instead,
we will implement some additional truncation and further solve only a new finite substitute for the lin-
earized problem. Since the problem (eqs. (8)–(10)) will be solved by means of the DPM, we must con-
struct an equivalent finite substitute for the auxiliary problem (eqs. (12) and (13)). Moreover, the same
finite substitute for the AP (eqs. (12) and (13)) will be used for calculating the operator, which pro-
vides boundary data for the problem (eqs. (8)–(10)). (See section 2.1.) In this section, we construct the
finite substitute for the AP introducing some additional assumptions in regard to both the smoothness of
the solution we are looking for as well as the rate of its decrease at infinity. This is done in order to sim-
plify the presentation and to avoid unnecessary complications that are not essential for the purpose of
constructing the numerical algorithm. We hope to provide a more rigorous analysis of the approach
described here in a forthcoming paper.

For reasons of numerical convenience and effectiveness, we will use a different method for calcu-
lating the solution of the AP, rather than the one from section 2.2. Using this new solution technique, we
will equivalently reformulate the AP on a new finite domain. Namely, let us again take the Fourier
transform of both sides of system (12); however, now we do so only in one Cartesian direction,y (com-
pare with eqs. (14)),

(36a)

(36b)

(Again, we drop the subscriptn hereafter in this section to simplify the notation. Moreover, we retain

here the same notation,  and, as in section 2.2; however, the left-hand sides of expressions (14) and
(36) are obviously not the same.) Then, we obtain the following family of systems of ordinary differen-
tial equations (ODE’s):

(37)
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where

and

(the matrixD is defined in formula (36)). The family (eq. (37)) is parameterized by the continuous vari-
ableη, , andx is an independent variable. Recall that the solution  we are going to
calculate should vanish at infinity. (See boundary conditions (13).) Consequently, we will generally
impose the following boundary condition on the solution of system (37):

(38a)

However, in particular cases (see the following discussion and ref. 8 for details) the condition
(eq.(38a)) may appear too restrictive—namely, the cases whenQ(η) has purely imaginary (or zero)
eigenvalues. Therefore, for some selected values ofω andη we will only require

(38b)

Note that we do not consider solutions that grow polynomially, the latter solutions correspond to the
case whenQ(η) has multiple purely imaginary eigenvalues and does not have a basis composed of
eigenvectors.

 Once we are able to find (for everyη) a solution to system (37) that would satisfy boundary condi-
tion (38) at infinity, then the solution to the AP (eqs. (12) and (13)) can be restored by means of a one-
dimensional inverse Fourier transform,

(39)

Let us designate the inverse operator for the one-dimensional problem (eqs. (37) and (38)) byGx(η).

That is, the solution  to this problem is given by

(40)

The operatorGx(η) is obviously linear. Combining formulas (36), (39), and (40), we obtain the follow-
ing formula for the solution of the AP (eqs. (12) and (13)):

(41a)
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Now, we will show how one can pass from the AP (eqs. (12) and (13)) to the new AP formulated on

the strip  and periodic in they direction, withY being the value of the

period. In doing so, we expect that when the periodY grows, , the solution to the new periodic
AP will uniformly converge to the solution of the original AP (eqs. (12) and (13)) on any strip

 where is fixed and always less thanY/2. We note that the same approach
was used in reference 8 for the steady-state problems.

 Hereafter, we assume that all functions involved are defined on the infinite strip

. The width of the stripY is initially supposed to be greater than the

diameter of . (Later we will consider the limit .) We assume periodicity of the solution to

the new AP in they direction. Then the solution that vanishes as  is given by

(41b)

In formula (41b), we use the Fourier series of a periodic function instead of the Fourier integral used in
formula (41a). Our aim is to estimate  from above on a finite (fixed) interval

, uniformly with respect tox. Let us introduce a uniform mesh inη, wherehη = 2π/Y is the
mesh size, and designateηk = khη, k = 0,±1, ±2, …. Let us then fix some interval (−A, A); we will
always choosehη (and consequentlyY) so thatA =hη(K + 1/2),K being an integer. Then,

Let us separately estimate each of the two terms (the first one corresponds to the finite interval, and the
second one corresponds to the complementary infinite interval).
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û x y,( ) ûY x y,( )–
1

2π
------ Gx η( ) f̂

∞–

∞

∫ x s,( )e i s y–( )η– sd ηd

∞–

∞

∫ hηG
x

ηk( ) f̂

Y– 2⁄

Y 2⁄

∫ x s,( )e i ηk s y–( )– sd

k ∞–=

k ∞=

∑–=

1
2π
------ … …

k K–=

k K=

∑–

A–

A

∫ +
1

2π
------ … …

k K>
∑–

η A>
∫≤ 1

2π
------ ˙ 1

1
2π
------ ˙ 2+=

1
2π
------ ˙ 1

1
2π
------ Gx η( ) f̂

∞–

∞

∫ x s,( )e i s y–( )η– sd ηd

K 1 2⁄–( )hη

K 1 2⁄+( )hη

∫ hηG
x

ηk( ) f̂

Y– 2⁄

Y 2⁄

∫ x s,( )e iηk s y–( )– sd–

k K–=

k K=

∑≤

1
2π
------ Gx η( ) f̂

∞–

∞

∫ x s,( )e i s y–( )η– sd ηd

K 1 2⁄–( )hη

K 1 2⁄+( )hη

∫ hηG
x

ηk( ) f̂

∞–

∞

∫ x s,( )e iηk s y–( )– sd–

k K–=

k K=

∑≤

hη Gx ηk( ) f̂ x s,( )e iηk s y–( )– sd
s Y 2⁄>

∫+



27

Clearly, the right-hand side of this inequality is actually the sum of errors of the quadrature formula of

rectangles for the function  (see formula(40)) on elemen-

tary segments of the kind [(k - 1/2)hη, (k + 1/2)hη], k = −K, …, K. Indeed, for eachk, k = −K, …, K, the

third term that corresponds to the integration over  turns into zero for sufficiently largeY’s

since  is compactly supported. Therefore, one can obtain the following estimate:

Note that if we initially assume that the solution  decreases at infinity sufficiently fast, then the

differentiability of its Fourier transform  (see the right-hand side of the previous inequality) fol-
lows directly.

For the second expression, we obtain

Let us replace the integration limits  in the second term on the right-hand side of this inequality by

, as was done when estimating . Then,

Additionally we assume that the solution we are looking for has two absolutely integrable derivatives.
Then its Fourier transform decreases faster than  and the previous inequality straightly implies

Combining the two obtained estimates, one easily gets

where ,c0 > 0. Clearly, all constants involved in the foregoing esti-

mates depend, generally speaking, on the specific nonperiodic function  that we approximate by

the periodic functions .

ˆ
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x R∈

η A– A,( )∈
⋅≤

c1 c2 y c3y2+ +( )hη
2A= c1 c2 c3, , 0>( )
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------ û x η,( ) ηd

η A>
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ûY x y,( )



28

Now let ε be an arbitrary positive number. We will choose sufficiently largeYε (i.e., sufficiently
small ) so that the following inequality

(42)

is satisfied for all . In other words, we require that for a prescribedε and for any  ine-

quality (42) has real positive solutionsA of the special kind,A = (K + 1/2)hη (K being an integer). The
latter requirement is always met if, e.g., the distance between the real roots of the quadratic equation

 is greater thanhη. This, in turn, yields the inequality

for hη. This inequality is obviously satisfied for any , where  is a unique positive

root of the equation . Since the fulfillment of inequality (42) is sufficient for

the estimate

(43)

to be true, then we have shown that for all  one can always find a sufficiently large periodYε so
that for anyY > Yε the absolute value of the discrepancy between the nonperiodic solution
and its periodic approximation , does not exceedε for all x and for all

.

Thus, we have reduced the original AP (eqs. (12) and (13)) to the new AP formulated on the strip

. In section 3, we show that we will only need to know the solution of the

AP in some neighborhood of , therefore, the approximation of the nonperiodic function  by

a periodic one, , only on a finite interval  is sufficient for our purposes. Let us now

show how to pass from the domain , which is still infinite, to a truly finite

domain for the new AP.

Instead of , let us now consider a rectangular domain

. (See fig. 1.) This new domain  should completely containΓ andΓ1.

We will reformulate the new AP so that its solution will be determined only on this finite domain

and will coincide there with the corresponding fragment of the solution found on

 before the reformulation. As previously mentioned, we only need to cal-

culate the solution to the AP in some neighborhood ofDin. Therefore, we are always able to choose an

appropriateX andY so that this neighborhood belongs to , and consequently we only need to con-

struct special boundary conditions at the linesx = 0 andx = X so that the reformulated new AP being

solved on  is equivalent to the periodic AP on the strip  described ear-

lier in this section. These boundary conditions atx = 0 and x = X will be set separately for each
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wavenumberk, k = 0, ±1, ±2, …, (see formula (41b)) involved in the Fourier representation of the func-

tion . Namely, for eachk, k = 0, ±1, ±2, …, we require that the corresponding Fourier mode,

, meets boundary condition (38) at infinity. To exactly transfer condition (38)

from infinity to the finite boundariesx = 0 andx = X, we use the following consideration. Since sys-
tem (37) consists of ODE’s with constant coefficients and since it is homogeneous outside (0,X) (recall

that , and consequently  for allη), then it obviously has four lin-

early independent eigensolutions (in the region of homogeneity). Depending on the structure of the set
of eigenvalues of the matrixQ(η), these eigensolutions may either increase or decrease (eq. (38a))
exponentially, or they may oscillate (eq. (38b)) while  and while . As previously men-
tioned, we do not consider the last possible case whenQ(η) has multiple purely imaginary (or zero)
eigenvalues and does not have a basis composed of eigenvectors, which leads to polynomially growing
solutions. Sometimes one can analytically make sure that this case really does not take place. For exam-
ple, we do this in section 3 in the discrete formulation for some particular values ofω andη. In other sit-
uations, this question may require some additional numerical investigation as in reference 8. At any rate,
to satisfy boundary condition (38), we must prohibit atx = 0 all solutions that do not decrease to the left
(i.e., as ), and prohibit atx = X all solutions that increase to the right (i.e., as ). The rea-
son for this asymmetry was mentioned before: once we have purely imaginary (or zero) eigenvalues of
Q(η) and, consequently, oscillating or constant-in-space solutions (see formula (38b)), then we cannot
always prohibit at both ends of the interval (0,X) all modes that do not decrease in the corresponding

direction. However, it should not affect the result since the final solution we are looking for
decreases at infinity. (See subsection 2.2.) Moreover, we have proven in reference 8 that once we have a
selected nondecreasing mode in Fourier representation of the solution, then after the inverse Fourier
transform the entire solution will nevertheless decrease. Therefore, we can take into account selected
nondecreasing modes (if any) by simply admitting them at one of the two boundaries,x = 0 orx = X. (In
case we do not do this, the problem may appear overdetermined.) It seems more natural to admit the
nondecreasing Fourier modes (if any) at the downstream boundaryx = X. (See ref. 8.)

 Now, we calculate the eigenvaluesλr(ηk), r = 1, …, 4, for the matrixQ(ηk). Those eigensolutions
that increase to the right correspond to eigenvaluesℜλr < 0, and those eigensolutions that do not
decrease to the left correspond to eigenvaluesℜλr ≥ 0. Therefore, the following boundary conditions at
x = 0 andx = X may be considered to provide an exact transfer of boundary condition (38) from infinity:

(44a)

(44b)

HereS−(ηk) andS+(ηk) are the special rank-deficient 4× 4 matrices that depend onQ(ηk), with their
ranks equal to the numbers of eigenvaluesλr(ηk) with nonnegative and negative real parts, respectively.
These matrices are given by

(45a)

(45b)
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ηk( )û X ηk,( ) 0= k 0 1± 2± …, , ,=( )

S
− ηk( ) Q ηk( ) λr ηk( )I–( )

ℜλr ηk( ) 0<
∏=

S
+ ηk( ) Q ηk( ) λr ηk( )I–( )

ℜλr ηk( ) 0≥
∏=



30

HereI  is an identity matrix and products in formulas (45) are calculated in accordance with the multi-
plicities of the eigenvalues. Analogous conditions will be used in section 3 while dealing with the finite-
difference formulation of the AP.

Thus, the formulation of the new finite AP is now complete. Namely, we have to solve equa-
tions(12) for the compactly supported right-hand side  on the domain  (see fig. 1)
with the periodicity boundary conditions in they direction (Y being the value of the period) and with
boundary conditions (44a) and (45a) atx = 0 and (44b) and (45b) atx = X. In the next section, we pro-
ceed to the finite-difference formulation of the problem and describe the numerical algorithm for setting
the global DPM-based ABC’s.

3. Numerical Method

3.1. Finite-Difference Scheme

Let us introduce a uniform Cartesian grid in , with hx, hy, andτ being the sizes of the
grid in x, y, andt directions, respectively. We designate this grid ,

(46)

We will construct a second-order finite-difference approximation of the system (eq. (3a)) on the
grid  (see formula (46)) using the stencil shown in figure 6.

Figure 6.  Stencil.
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Namely, we use the first-order differences in thex andt directions and second-order central differ-
ences in they direction, and we center the scheme with respect to the point (m + 1/2, j, l + 1/2), which
yields

(47)

The finite-difference scheme (47) is written for the nodes (m, j, l), m= 0, 1,…, M − 1, j = 0, 1,…, 2J,
l = 0, 1,…, 2L with the assumption that we later impose periodicity boundary conditions in time as well
as in they direction. Note that the stability of the scheme of type (47) was examined for the model scalar
equation

(48)

It turns out that the corresponding finite-difference scheme for equation (48) is unconditionally stable in
the von Neumann sense.

Then, using the periodicity conditions (compare with formula (4))

(49)

we implement a discrete Fourier transform in time (compare with formulas (7) and (6)),

(50)

(51)

and instead of system (47) obtain

(52)
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ûm j 1+,
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n 2ûm 1+ j,
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The finite-difference system (52) is a discrete analogue of the continuous system (8) on the two-
dimensional gridN 0,

(53)

In formula (53)hx andhy are the same as in formula (46).

We also note that once , then  (see section 2) and .

3.2. Difference Auxiliary Problem

Let us construct another Cartesian grid in ,

(54)

The grid sizeshx andhy are the same as before. The difference AP is formulated for the inhomogeneous
counterpart of system (52) with a certain compactly supported right-hand side. The unknowns for the
difference AP are defined on the gridN 0 (see formula (53)), and the right-hand side is defined on the
grid M 0. (See formula (54).) In doing so, we obviously have the second order of approximation. We
will define the specific right-hand side for the AP, , m= 0, 1,…, M − 1, j = 0, 1,…, 2J, in
section 3.3. As for now, assuming that this right-hand side is already known , we
provide an exact formulation of the difference AP and describe an effective algorithm for its numerical
solution.

In accordance with the results of section 2.3, we impose the periodicity boundary conditions in the
y direction,

(55a)

(55b)

Then, we implement a discrete Fourier transform (compare with formulas (36)),

(56a)

(56b)

and obtain, instead of the inhomogeneous counterpart to system (52),
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Here , , and C, D, F, and H are defined in for-

mula(3b). For each wavenumberk, k = −J, … J, system (57) is composed of ordinary difference equa-
tions, and it is a discrete analogue of system (37). To find a solution to the difference AP, we will have
to solve system (57) for allk, k = −J, … J. However, the formulation of the difference AP is still incom-
plete. To complete it, we have to set some boundary conditions atm = 0 andm= M (as was done at
x = 0 andx = X for the continuous case in section 2.3). These boundary conditions should guarantee the
desirable far-field behavior of the solution (i.e., decay at infinity). They will be formulated separately
for each wavenumberk, k = −J, … J, i.e., the system (eq. (57)) will be supplemented for eachk by some
boundary conditions atm= 0 andm= M. The idea for constructing these boundary conditions in the
discrete case is analogous to the one implemented in constructing boundary conditions (44) and (45) for
continuous system (37). Namely, when formally considered on an infinite one-dimensional mesh,
−∞ < m< ∞, system (57) obviously becomes homogeneous at least form ≥ M andm ≤ 0. The homoge-

neous system has four linearly independent eigensolutions: those that correspond to

decrease to the right (i.e., as ); those that correspond to  decrease to the left (i.e., as

); and those that correspond to  have either constant or oscillatory behavior. Here,

, r = 1, … ,4, are the eigenvalues of the matrix . Let us note that while calculat-

ing the eigenvalues  for the stationary Navier-Stokes equations (ref. 8) (the eigenvalues are calcu-

lated numerically using standard NAG subroutines), we have found that for all specific sets of the
parameters involved (i.e., grid sizeshx andhy and hydrodynamic parametersM0, Re, Pr, andγ) the abso-
lute values of eigenvalues were never equal to unity except for the case of zero wavenumber,k = 0. For
k = 0, we have obtained a multiple eigenvalue . (See ref. 8.) However, even in this case the
system matrix still has a basis composed of eigenvectors, which provides us with the reason for not con-
sidering the polynomially growing solutions in reference 8. For system (57), we also have a particular
case when the eigenvalues of the system matrix become equal to unity in absolute value. Namely, it is

easy to see from formula (58) that  (identity matrix). Obviously,  has four lin-

early independent eigenvectors; therefore, we do not have polynomially growing solutions in this case
as well. As for other values ofk andn, a numerical check (as was done in ref. 8) will always be neces-

sary to determine whether the eigenvalues  exist. If such eigenvalues do exist, a check is

also necessary to determine what their multiplicities are and if there is a basis composed of eigen-
vectors. Relying on our previous experience (ref. 8), we assume that while solving system(57), we can

restrict ourselves by considering only these two cases:  and  with the full system

of eigenvectors. Nontrivial Jordan blocks (of order more than 1) for  are excluded from con-

sideration. Note, if the basis composed of eigenvectors does exist for , then system (57) will

be treated exactly in the same way as in the case  (the only difference is that the stability con-

stant becomes proportional toM).

Returning to the question of setting the boundary conditions for system (57) atm = 0 andm= M, we
require that, analogous to the continuous case (see section 2.3), boundary conditions atm = 0 should
prohibit all modes that do not decrease to the left (i.e., as ) and boundary conditions atm= M
should prohibit all modes that increase to the right (i.e., as ). Therefore, we may represent the
desirable boundary conditions in the form of matrix relations (compare with formulas (44)),
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(59a)

(59b)

where

(60a)

(60b)

(compare with formulas (45)).

 Thus, the final formulation of the difference AP is the following. One should solve the inhomoge-
neous counterpart to system (52) in  on the gridN 0 (see formula (53)), where the right-hand side

 is specified on the gridM 0 (see formula (54)), with periodicity
boundary conditions (55) in they direction and boundary conditions (59a) and (60a) at the linem= 0
and (59b) and (60b) at the linem = M.

 To solve the difference AP, we implement the following numerical procedure. First, apply discrete
Fourier transform (56) to both sides of the finite-difference system, then solve the system ofordinary
difference equations (57) with boundary conditions (59) for each wavenumberk, k = −J, … J, and
finally restore the solution by means of the inverse Fourier transform,

(61)

The type of boundary conditions (59) (which are imposed separately for each wavenumberk) makes the
choice of numerical method most relevant. An effective algorithm for solving one-dimensional prob-
lems (eqs. (57) and (59)) is delineated in our work (ref. 25). We do not reproduce the corresponding
results here, we only note that this algorithm may be thought of as a version of the well-known succes-
sive substitution technique but without its “inverse” or “resolving” part. The computational cost of the
numerical procedure in reference 25 as applied to solving the problem (eqs. (57) and(59)) is O (M)
operations (for eachk, k = −J, … J).

 Let us now briefly describe the concept of convergence for the solutions of the difference AP.
According to section 2.3, we approximate the nonperiodic solution by a periodic one on a finite interval

 when the periodY grows, . In its own turn, an approximate solution to the periodic
problem is found by a finite-difference method on the grid with sizeshx andhy. Therefore, we will con-
sider (uniform) convergence of the periodic difference solution (i.e., solution of the difference AP) to
the nonperiodic continuous solution (i.e., to the solution of the original continuous AP) only on afinite
rectangle  (this rectangle should be large enough to contain at leastΓ1) rather than on the
whole domain of the difference AP. Moreover, we will consider this convergence not onlywhen the
grid size vanishes but also when the periodY synchronously increases, i.e., as .
Of course, the rate of decrease for the grid sizeshx andhy and the rate of increase for the periodY are
not independent; some estimates connecting these rates can be found in reference 8. Furthermore, some
numerical experiments from reference 8 show that the presented construction of the difference AP does
ensure the convergence of its solution to the solution of the continuous AP in the sense just described.
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3.3. Computation of ABC’s

In accordance with section 2.1, to set the ABC’s we need to know the following data: .

Here, ζ is the normal toΓ. When integrating the Navier-Stokes equations step-by-step in time, we

assume that  is provided from insideDin; then we use these data to restore , which enables

us to advance the next time step. However, as we carry out our analysis in the Fourier space, we cannot

consider  as the actual values obtained inside the computational domain. To get ,

we first have to calculate the Fourier transform of the function . Without loss of generality, we

may always think that the latter is specified at the following points:

(62)

Of course, actual discretization in time for the Navier-Stokes equations inside should not necessar-
ily coincide with the one used for the solution of the exterior linearized problem. (See formula (46)).
However, we may always use some interpolation in time to obtain the boundary data on a uniform mesh
with respect tot (eq. (62)), which is convenient for further consideration. Hereafter, we simply assume
that this interpolation (which is one-dimensional in time and of sufficiently high order) has already been
implemented for each nodeν, if necessary.

Another important issue related to the step-by-step integration in time is that the function ,

which provides the boundary data, is not necessarily time-periodic until we achieve a true oscillatory
regime. However, for the purpose of constructing the ABC’s, we will propose some generalized treat-
ment of the boundary data as being already periodic. Namely, let us formally calculate the Fourier coef-

ficients of ,

(63)

Then, it is well-known (see ref. 24 by Kolmogorov and Fomin) that the time-periodic function

(64)

minimizes the following functional
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(  is a usual Euclidean norm) on the class of periodic functions; i.e.,  from formula (64) is

the best periodic least squares approximation of . Relying on this property, we will further use

Fourier coefficients (63) as the boundary data that “drive” the ABC’s (which may be referred to as the
generalized treatment of the boundary data as being time-periodic). Clearly, as we integrate the Navier-

Stokes equations in time and approach the true oscillatory regime, the “source” function  and

its Fourier series  (eq. (64)) also approach each other.

 We now implement the DPM (refs. 9 and 10) to actually calculate the ABC’s. We note that the

boundary data  are specified on the curveΓ, which is positioned arbitrarily with respect to

coordinate lines of the gridN 0. (See formula (53).) Moreover, we do not impose any restrictions on the
shape ofΓ itself. In our opinion, the DPM (refs. 9 and 10) provides an ideal tool for treating such geo-
metrically complicated problems.

Let us introduce the following discrete sets. We consider a six-node two-dimensional stencil

This stencil is actually a projection of the one from figure 6 onto the planet = const. Obviously, the dis-
cretization (52) was obtained usingStm+ 1/2, j. Then, we define

Clearly, the set of grid nodesγ is located near the artificial boundaryΓ. We will call this setthe grid
boundary (by analogy). The setsMin, M, N in, N , andγ are shown in figure 7.

Further, we will need to interpolate grid functions fromN 0 to the points . Let us select all
those nodes  that should be taken into account once constructing local interpolation formulas of
sufficiently high (e.g., second) order. All the nodesκ are located not far fromΓ1. Without loss of
generality, we always may assume that . We denote the operation of local interpolation from the
Cartesian gridN to ν1 by .

Let us also introduce the set of collocation points  and the space of eight-component vector

functions  defined on the setσ. The elements of  will be used as unknowns for the bound-

ary operator equation, which will replace the exterior linear difference problem. Henceforth, we will

treat  as vectors containing the values of, , , and  and the values of the derivatives ,

, , and  at the pointsσ; here,ζ is the (outward) normal toΓ. Note that the functions  are

the discrete approximations of  from section 2.1.

Generally, the sizeshx andhy of the gridN 0 and the sizehσ of the one-dimensional collocation grid
on the curveΓ are not independent; they should be correlated to each other in a certain way. This
requirement is a consequence of convergence conditions for the DPM algorithm. (See ref. 9.) The
theoretical questions concerning the correlation between the sizes of gridsN 0 andσ are delineated in
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∂ζ
---------

∂v̂n

∂ζ
-------- ∂ p̂n

∂ζ
--------- ∂ρ̂n

∂ζ
--------- ŵσ
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reference 9. As concerns practical applications, the final choice of grids is always done taking into
account some previous computational results. In particular, it seems useful to conduct the computations
(see refs. 11 and 12) for the set of collocation points, which is more concentrated at the outflow part of
the external boundary in the wake region and uniformly spaced at the inflow part of the external bound-
ary. Moreover, sometimes the relation  appears to be proper. At any rate, for each specific
class of problems (determined both by the geometry of computational domain and by the parameters of
fluid at infinity) one always can make an appropriate choice of the gridsN 0 andσ relying on general
theory (ref. 9) and on the numerical experience.

 Let us now specify some  and implement the following procedure. First, we smoothly
interpolate  alongΓ (i.e., along the smooth components ofΓ) and get the function . Here,R is
an interpolation operator. Then, we drop the normals from the pointsγ to Γ and find the values of
at the foots of these normals. Since (and consequently ) contains the values of both, , ,
and  and their normal derivatives and since the distance between any nodeγ and the curveΓ is small
(of orderh), we may approximately find , , , and  at the nodesγ using the two first terms of
the Taylor expansion. We will designate the entire operation of continuation of the boundary data from

Figure 7.  Grid sets. GridN 0—continuous thin vertical lines;M0—continuous thin horizontal lines & dashed thin vertical
lines; continuous boundaryΓ—thick dark line;Min—gray boxes;M—gray circles;N in—white boxes;N—white circles;

—big white circles & boxes.
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σ to γ asπγσ, . Note that the preceding algorithm of continuation generally applies to the
smooth parts ofΓ (where the normal exists). In practice, however, the curveΓ is usually not smooth (see
fig. 1), and it is impossible to construct an appropriate normal when the nodeγ is located in some neigh-
borhood of the breaking point of the curve. The construction of the operatorπγσ in this case is based on
the existence of two linearly independent directions along the curve, which enables us to obtain the
desirable continuation anyway.

Now, using the calculated continuation of the boundary data, , we construct the fol-
lowing grid function:

(65)

which is defined already on the entire gridN 0. (See formula (53).) Then, we substitute the function
from formula (65) into the left-hand side of system (52). Generally speaking, does not satisfy equa-
tions (52). Therefore, we generate some nonzero right-hand side, which we designate. Here,
is the linear operator defined by the left-hand side of system (52). This operator takes the functions
defined on the gridN 0 (eq. (53)) as an input and generates the functions defined on the gridM 0

(eq. (54)) as a result. Finally, we truncate the function  to the setMin, which yields

(66)

We will use the function  from formula (66) as the right-hand side for the difference AP;

by definition, . Once we solve the difference AP with the right-hand side (eq.

(66)), we get the function . Here,  is the Green (i.e., inverse) operator of the difference AP.

The function  is defined on the gridN 0. As it is considered only on the sub-grid , it is

calledthe difference potential with the density , . (See ref. 9.) Clearly, the differ-

ence potential satisfies equations (52) since  on M; moreover, it satisfies the boundary condi-

tions of the difference AP. The difference potential  is a discrete realization of the generalized

potential mentioned in the introduction. Later, we will find an approximate (i.e., difference) solution to
the problem (eqs. (8)–(10)) in the form of a difference potential and then use this solution to construct
the ABC’s, i.e., to obtain the missing relations between the unknowns at and at . There-

fore, we will need to know the difference potential only on the two subsets ofN located closely toΓ
andΓ1 on  and on , respectively.

 Indeed, once we calculate the difference potential onγ, we can then construct the operator as

the trace of the potential, . This operator will be the key element of the boundary

operator equation of the DPM. Actually,  is a difference boundary projection operator (ref. 9), which

substitutes  (see section 2.1, eq. (11)) in practical computations.
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nûN 0

n

m 1 2⁄+ j,
if xm 1 2⁄+ yj,( ) Mi n∈

0 if xm 1 2⁄+ yj,( ) Min∉





=

f̂M0
n f̂m 1 2⁄+ j,

n≡

suppf̂m 1+ 2 j,⁄
n Din⊂ f̂M 0

n

G0
nf̂M 0

n G0
n

G0
nf̂M 0

n N N 0⊂

ûγ
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 Once we calculate the difference potential onκ, we can interpolate it and find the trace of the solu-

tion to the linear problem onν1, . Thereby, we obtain the desirable rela-

tions between the unknowns atΓ andΓ1 through the solution of the linearized exterior problem. Let us
now recall that we have replaced the original infinite-in-space problem by the periodic problem formu-

lated on the strip , claiming that we will need to know the solution only on

some neighborhood ofDin, and therefore the convergence on a fixed interval, , is sufficient
for our purposes (see subsection 2.3). Since we do not need to calculate the difference potential any-
where except atγ andκ, the previous statement is now justified.

We now formulate the main result of the DPM theory. (See ref. 9.) Consider the entire space of grid
functions  defined onγ. Those and only those elements of this space which satisfy the equation

(67)

can be complemented toN so that the complement solves system (52) (with boundary conditions (55)

and (59)). As previously mentioned, the operator  is a projection; it is a discrete analogue of the Cal-

deron boundary pseudodifferential operators. (See ref. 17.) For any, the result  (as well as

) can be explicitly calculated in accordance with the aforementioned procedure,

.

In section 2.1, we have declared our goal as to characterize those and only those  that

would solve equations (8) with boundary conditions (9) onDex and coincide with the trace of the solu-
tion on Γ. Instead, we have provided an analogous classification (see eq. (67)) for the discrete rather
than for the continuous formulation of the problem. Therefore, we have equivalently replaced linear
system (52) onN , along with the boundary conditions (55) and (59), by the boundary equation with
projection (eq. (67)). Consequently, we can now specify the proper boundary data (see equality (10)) for

the discrete counterpart of the problem (eqs. (8)–(10)). Namely, let us take any  (provided

from insideDin) and interpolate it alongΓ to the set of collocation pointsσ, .

Then, continue  using the operatorπγσ, and finally apply  (which requires solving the AP). In

accordance with the previously formulated main result, the grid function

(68)

admits the complement toN that solves the problem (eqs. (52), (55), and (59)).

Thus, we have completed the first stage of constructing the ABC’s (section 2.1) and now proceed to
the second one. Instead of the problem (eqs. (8)–(10)), we will consider its discrete counterpart: to solve
system (52) onN  with external boundary conditions (55) and (59), and with boundary condition
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(69)

at γ;  in equality (69) comes from formula (68). The solvability of the problem (eqs.(52), (55), (59),
and (69)) is guaranteed by the special type of boundary data provided in formula (68).

To actually find the solution to the problem (eqs. (52), (55), (59), and (69)), we calculate the differ-
ence potential  with the density  from formula (68). Then, we interpolate the potential fromN
to ν1, which yields

(70)

Equality (70) provides the missing relations between the unknowns atν and atν1 in theFourier space;
these relations are based on the solution to the linearized exterior problem. Therefore, equality (70) is
almost the desirable ABC, and the only remaining step is the inverse Fourier transform in time. Before
implementing the inverse transform, let us note that the entire algorithm becomes most convenient from

a practical standpoint if we calculate the matrix representation of the operator from formula (70). To

do that, we choose some basis in , e.g., the simplest one, composed of the vectors like (0,…, 0, 1, 0,

…,0), and implement the entire proceeding procedure. More precisely, we calculate

, for each basis vector . In so doing, we obtain the matrix of

 (each column will be the response to a specific basic function) and then, multiply-

ing the above matrix from the right by the interpolation matrixRσν, we finally obtain the matrix repre-

sentation of . (Note that we do not start from basis functions  since the number of nodesσ

is usually much less than the number of nodesν.) In fact, it is possible to show (see ref. 9) that for any

,  and therefore we need to calculate the matrix . Clearly,

the computation of each column of the matrix  requires one solution of the difference AP,

which, in turn, involves the direct (eq. (56b)) and inverse (eq. (61)) Fourier transforms and the solution
of the problem (eqs. (57) and (59)) for each wavenumberk, k = −J, …, J. Either Fourier transform will

require only  rather than  operations. (For definitions ofM andJ, see formula(46).)

Indeed, the support of the right-hand side  is actually concentrated nearΓ since  differs from

zero only onγ and the operator  is local. Therefore, while calculating direct Fourier transform (56b)

for eachm, m= 0, 1,…, M − 1, only a few values  differ from zero, and consequently the total

cost of this computation is  operations. Analogously, while calculating the inverse Fourier

transform (61) for eachm, m= 0, 1,…, M, we need to know  only for a few selected values ofj

since all other (xm, yj) do not belong toκ. Therefore, the total cost of this computation is
operations as well. Finally, the solution of the problem (eqs. (57) and (59)) for each wavenumberk,
k = −J, …, J costsO (M) operations. (See ref. 24.) Adding all these quantities, we obtain a total of

 operations for the computation of each column of the matrix . We see that

although the entire algorithm requires repeated solution of the difference AP, the solution may be
obtained by means of an efficient procedure, which should make the total expense for calculating the
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ABC’s quite acceptable. Note that in our previous work (see refs. 8, 11, and 12) we have used a differ-
ent version of the algorithm. We expect that the total cost per one Fourier mode in time will decrease for
the current version because of using the thin-layer rather than the full Navier-Stokes equations. (Indeed,

the matrices  and  in system (57) are 4× 4 and the matrices for the full Navier-Stokes equations

are 8× 8.) (See ref. 8.)

 Recall, our final goal is to express the values of physical variables atν1, ,

in terms of . Choosing the same discretization in time as in the formula (eq. (62)) and imple-

menting inverse Fourier transform (64), we obtain from formula (70),

(71)

Then, substituting expression (63) into formula (71) and changing the summation order, we get,

Finally, designating

we obtain

(72)

Equality (72), which is a specification of equality (11), provides the missing boundary relations between
the values of the unknowns atΓT and at  (in the discrete formulation). Therefore, equality (72) pro-
vides the ABC’s we were aiming to obtain. Additionally, we note that the ABC’s (eq. (72)) can be sim-
plified for the case of integrating the Navier-Stokes equations step-by-step in time insideDin. In doing
so, we only need to know  on the upper time level, i.e., fort = T, which corresponds tol = 2L + 1 or
to l = 0 because of the periodicity. Substitutingl = 0 into equality (72), we obtain

(73)

Equality (73) is a desirable global ABC for implementation together with the step-by-stepintegration
procedure in time. Indeed, formula (73) expresses the values ofu, v, p, andρ (perturbations) at the

Ak
n Bk

n

uν1
uν1

vν1
pν1

ρν1
, , ,( )≡

uν
∂uν
∂ζ
---------,

 
 
 

uν1

l T̂n ûν
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outermost coordinate rowν1 on the upper time levelt = T as a function of the prescribed data

through the time-periodic solution of the linearized thin-layer equations with the free-stream boundary

condition at infinity. We note that the matrices of operatorsT0, s are calculated explicitly and therefore,
the practical implementation of the ABC’s (eq. (73)) is reduced to a few matrix-vector multiplications.
We also note that this practical implementation may preliminarily require some interpolation in time at
the nodesν, which may be represented in a matrix form as well. If we use an explicit scheme for inte-
grating the Navier-Stokes equations insideDin, then we directly implement formula (73) at each time
step for determining the missing values of the unknowns at the outermost coordinate row of the grid on
the upper time level. If the scheme insideDin is implicit, then we include the relations (eq. (73)) into the

system of equations we solve on the upper time level treating all  for s < 2L + 1 as forcing

terms.

4. Concluding Remarks

We have constructed the DPM-based nonlocal artificial boundary conditions for computation of
oscillating external flows, specifically, compressible viscous fluid flows past finite bodies. To develop
the ABC’s, we used linearization of the governing equations against the constant free-stream back-
ground in the far field. To justify the constructions of difference potentials used for computation of the
ABC’s, we provided some results on solvability of the linearized thin-layer equations. The nonlocal
nature of the proposed ABC’s arises from their closeness to the exact boundary conditions. In spite of
this nonlocal nature, our ABC’s apply to artificial boundaries of irregular shape with equal ease, which
is very important for applications. We expect that these boundary conditions may become an effective
numerical tool in practical computing. The numerical results on the implementation of the described
ABC’s will be presented in future work.

Note that we describe the algorithm for calculating the ABC’s only for a particular class of methods
used for integrating the Navier-Stokes equations insideDin, namely, for such methods that the knowl-
edge of missing relations between only two external coordinate rows of the grid (ν andν1) is sufficient
for closing the discrete system inside the computational domain. Obviously, once the method used
insideDin is of higher (than the second) order, the consideration of only two curves,Γ andΓ1, might be
insufficient. However, we always can assume that the “linear region”Dex contains more than one curve,
e.g.,Γ1 andΓ2 instead of onlyΓ1, and can treat this case in the same way as described in this paper.
Moreover, one can use higher order schemes for solving the linearized exterior problem as well. Such
modifications may extend the possible range of applications for the described technique by including,
for example, some computational problems of aeroacoustics.

NASA Langley Research Center
Hampton, VA 23681-0001
April 11, 1996
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